Bender-Knuth Billiards in Coxeter Groups

Colin Defant

Harvard University

Based on joint work with Grant Barkley, Eliot Hodges, Noah Kravitz, and Mitchell Lee

Let (W, S) be a Coxeter system, and write $S = \{s_i : i \in I\}$, where I is a finite index set. Consider a nonempty finite convex subset \mathscr{L} of W. If W is a symmetric group, then \mathscr{L} is the set of linear extensions of a poset, and there are important *Bender–Knuth involutions* $BK_i: \mathscr{L} \to \mathscr{L}$ indexed by elements of I. For arbitrary W and for each $i \in I$, we introduce an operator $\tau_i: W \to W$ that we call a *noninvertible Bender–Knuth toggle*; this operator restricts to an involution on \mathscr{L} that coincides with BK_i when W is a symmetric group. Given an ordering i_1, \ldots, i_n of I and a starting element u_0 of W, we can repeatedly apply the toggles in the order $\tau_{i_1}, \ldots, \tau_{i_n}, \tau_{i_1}, \ldots, \tau_{i_n}, \ldots$; this produces a sequence of elements of W that can be viewed in terms of a beam of light that bounces around in an arrangement of transparent windows and one-way mirrors. Our central questions concern whether or not the beam of light eventually ends up in \mathscr{L} . We will discuss several situations where this occurs and several situations where it does not.