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It is conjectured (though a variant is well-known) that the Hilbert schemes of points
on the planar singular curve ym = xn recover the rational q, t-Catalan number (at least
when gcd(m, n) = 1) defined as ∑ qareatdinv summed over m × n Dyck paths [1, 3]. In
view of this correspondence, the q, t-symmetry corresponds to a functional equation
resulting from the Serre duality in algebraic geometry.

We propose a generalization of this algebro-geometric model that surprisingly yields
a marriage of all three topics in the title [2]. Fix an integer d ≥ 1, consider the Quot
schemes parametrizing finite-length quotients of a rank d vector bundle on the said
curve. This includes the Hilbert scheme of points as a d = 1 special case. Our results
suggest that certain Catalan-like features persist in the high-d generalization: an analo-
gous functional equation holds, and the case m = 2, n ≥ 2 exhibits proven/conjectured
positivity patterns. The said family of cases (note that they are the baby cases in the
Dyck path theory) yield q, t-polynomials whose formulas surprisingly involve the
Hall polynomial, an ingredient absent in the known d = 1 case but present whenever
d ≥ 2. Moreover, by specializing and taking a d → ∞ limit (which has an independent
number-theoretic motivation from counting commuting matrices), these polynomials
give rise to infinite sums that evaluate to infinite products, generalizing the celebrated
Rogers–Ramanujan identities in partition theory.
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