q, t-Catalan \times Hall-Littlewood \times Rogers-Ramanujan?

Yifeng Huang

Based on joint work with Ruofan Jiang

It is conjectured (though a variant is well-known) that the Hilbert schemes of points on the planar singular curve $y^{m}=x^{n}$ recover the rational q, t-Catalan number (at least when $\operatorname{gcd}(m, n)=1$) defined as $\sum q^{\text {area }} d^{\text {dinv }}$ summed over $m \times n$ Dyck paths [1,3]. In view of this correspondence, the q, t-symmetry corresponds to a functional equation resulting from the Serre duality in algebraic geometry.

We propose a generalization of this algebro-geometric model that surprisingly yields a marriage of all three topics in the title [2]. Fix an integer $d \geq 1$, consider the Quot schemes parametrizing finite-length quotients of a rank d vector bundle on the said curve. This includes the Hilbert scheme of points as a $d=1$ special case. Our results suggest that certain Catalan-like features persist in the high- d generalization: an analogous functional equation holds, and the case $m=2, n \geq 2$ exhibits proven/conjectured positivity patterns. The said family of cases (note that they are the baby cases in the Dyck path theory) yield q, t-polynomials whose formulas surprisingly involve the Hall polynomial, an ingredient absent in the known $d=1$ case but present whenever $d \geq 2$. Moreover, by specializing and taking a $d \rightarrow \infty$ limit (which has an independent number-theoretic motivation from counting commuting matrices), these polynomials give rise to infinite sums that evaluate to infinite products, generalizing the celebrated Rogers-Ramanujan identities in partition theory.

References

[1] E. Gorsky and M. Mazin. Compactified Jacobians and q, t-Catalan numbers, I. J. Combin. Theory Ser. A, 120(1):49-63, 2013.
[2] Y. Huang and R. Jiang. Generating series for torsion-free bundles over singular curves: rationality, duality and modularity. https://arxiv.org/abs/2312.12528
[3] A. Oblomkov, J. Rasmussen, and V. Shende. The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link. Geom. Topol., 22(2):645-691, 2018. With an appendix by Eugene Gorsky.

