Generalized parking functions and three-dimensional Lindström-Gessel-Viennot Lemma

GaYee Park

L'Université du Québec à Montréal

Based on joint work with François Bergeron and Yan Lanciault
The "classical" parking functions of length n is counted by the formula $(n+1)^{n-1}$. They corresponds bijectively to the standard Young tableaux (SYT) of skew-shapes $\alpha+1^{n} / \alpha$, where α is any partition under $\lambda=(n-1, \ldots, 2,1)$. There is a natural symmetric group action on these parking functions, where the orbit is counted by the Catalan number $\frac{1}{n+1}\binom{2 n}{n}$. Then the Frobenius character of this action over all SYT of shapes $\alpha+1^{n} / \alpha$ is given by the sum of all skew Schur functions $s_{\left(\alpha+1^{n} / \alpha\right)}(\mathbf{x})$. In this talk we generalize this notion to any partition λ and study the combinatorics of the generalized parking function by relating them to non-crossing lattice paths.

