Some combinatorial aspects of cyclotomic polynomials

Richard P. Stanley

A theorem of Schur (1926) states that the number of partitions of n for which no part appears exactly once equals the number of partitions of n into parts $\equiv \pm 1(\bmod 6)$. The key fact behind this identity is that the numerator of the rational function $\frac{1}{1-x}-x$ is a product of cyclotomic polynomials $\phi_{j}(x)$, in this case just the single cyclotomic polynomial $\Phi_{6}(x)$. This leads to asking for what subsets S of the positive integers is the power series $N_{S}(x)=\frac{1}{1-x}-\sum_{i \in S} x^{i}$ a product of cyclotomic polynomials divided by a product of cyclotomic polynomials. We then call S a cyclotomic set. If S is cyclotomic, then we get a partition identity analogous to Schur's, but in general the parts of the partition might be weighted by integers, sometimes negative. Thus we can also ask when we have a "clean" identity, i.e., no weighted parts.

One source of cyclotomic sets comes from numerical semigroups, i.e., a submonoid M of the nonnegative integers \mathbb{N} (under addition) such that $\mathbb{N}-M$ is finite. If the monoid algebra QM is a complete intersection (meaning in this case that if M has k generators, then all the relations among the generators are consequences of $k-1$ relations, the minimum possible), then $\mathbb{N}-M$ is a cyclotomic set.

For any subset S of the positive integers, we can also ask for the number $f_{S}(n)$ of monic polynomials of degree n over the finite field \mathbb{F}_{q} that have no irreducible factors whose multiplicity belongs to S. If S is a cyclotomic set, then we can write an explicit formula (in general quite lengthy) for the numbers $f_{S}(n)$.

For instance, if $S=\{1\}$ then we are counting (monic) powerful polynomials of degree n, i.e., those with no irreducible factor of multiplicity one. We get

$$
f_{S}(n)=q^{\lfloor n / 2\rfloor}+q^{\lfloor n / 2\rfloor-1}-q^{\lfloor(n-1) / 3\rfloor} .
$$

For another example, take $S=\{2,3,4, \ldots\}$. Then we are counting squarefree polynomials, and we obtain the well-known result

$$
f_{S}(n)=q^{n-1}(q-1)
$$

This is a kind of analogue (though not a q-analogue in the usual sense) of Euler's result that the number of partitions of n into distinct parts is equal to the number of partitions of n into odd parts.

